Inhibition of Drosophila Wg Signaling Involves Competition between Mad and Armadillo/β-Catenin for dTcf Binding
نویسندگان
چکیده
Precisely regulated signal transduction pathways are crucial for the regulation of developmental events and prevention of tumorigenesis. Both the Transforming Growth Factor beta (TGFbeta)/Bone morphogenetic protein (BMP) and Wnt/Wingless (Wg) pathways play essential roles in organismal patterning and growth, and their deregulation can lead to cancers. We describe a mechanism of interaction between Drosophila Wg and BMP signaling in which Wg target gene expression is antagonized by BMP signaling. In vivo, high levels of both an activated BMP receptor and the BMP effector Mad can inhibit the expression of Wg target genes. Conversely, loss of mad can induce Wg target gene expression. In addition, we find that ectopic expression in vivo of the Wg transcription factor dTcf is able to suppress the inhibitory effect caused by ectopic Mad. In vitro binding studies revealed competition for dTcf binding between Mad and the Wnt effector beta-catenin/Armadillo (Arm). Our in vivo genetic analyses and target gene studies support a mechanism consistent with the in vitro binding and competition studies, namely that BMP pathway components can repress Wg target gene expression by influencing the binding of Arm and dTcf.
منابع مشابه
Armadillo Coactivates Transcription Driven by the Product of the Drosophila Segment Polarity Gene dTCF
The vertebrate transcription factors TCF (T cell factor) and LEF (lymphocyte enhancer binding factor) interact with beta-catenin and are hypothesized to mediate Wingless/Wnt signaling. We have cloned a maternally expressed Drosophila TCF family member, dTCF. dTCF binds a canonical TCF DNA motif and interacts with the beta-catenin homolog Armadillo. Previous studies have identified two regions i...
متن کاملRoles of the C terminus of Armadillo in Wingless signaling in Drosophila.
Drosophila melanogaster Armadillo and its vertebrate homolog beta-catenin play multiple roles during development. Both are components of cell-cell adherens junctions and both transduce Wingless (Wg)/Wnt intercellular signals. The current model for Wingless signaling proposes that Armadillo binds the DNA-binding protein dTCF, forming a bipartite transcription factor that activates Wingless-respo...
متن کاملA Complex of Armadillo, Legless, and Pygopus Coactivates dTCF to Activate Wingless Target Genes
BACKGROUND Upon receiving a Wnt signal, cells accumulate beta-catenin (Armadillo in Drosophila), which binds directly to TCF transcription factors, leading to the transcription of Wnt target genes. It is generally thought that beta-catenin/Armadillo is a transcriptional coactivator when bound to TCF in the nucleus and that this function is mediated by its C terminus. However, recent findings in...
متن کاملWingless-Independent Association of Pygopus with dTCF Target Genes
The Wnt signaling pathway controls numerous cell fates during animal development. Its inappropriate activity can lead to cancer in many human tissues. A key effector of the canonical Wnt pathway is beta-catenin (or Drosophila Armadillo), a highly unstable phosphorylated protein that shuttles rapidly between nucleus and cytoplasm. Wnt signaling inhibits its phosphorylation and degradation; this ...
متن کاملWnt, Hedgehog and Junctional Armadillo/β-Catenin Establish Planar Polarity in the Drosophila Embryo
To generate specialized structures, cells must obtain positional and directional information. In multi-cellular organisms, cells use the non-canonical Wnt or planar cell polarity (PCP) signaling pathway to establish directionality within a cell. In vertebrates, several Wnt molecules have been proposed as permissible polarity signals, but none has been shown to provide a directional cue. While P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008